Minimum Weight Topology Optimization Subject to Unsteady Heat Equation and Space-time Pointwise Constraints – toward Automatic Optimal Riser Design in the Shape Casting Process
نویسندگان
چکیده
The automatic optimal design of feeding system in the shape casting process is considered, i.e., to find the optimal position, size, shape and topology of risers, and riser-necks. It is formulated as a minimum weight topology optimization problem subjected to a nonlinear transient PDE and an infinite number of space-time pointwise constraints. In addition to regularization and relaxation of the original model, an elegant bilevel reformulation of the optimization problem is introduced which makes it possible to manage the infinite number of design parameters and state-constraints efficiently. The computational cost of this method is asymptotically independent from the number of design parameters and constraints. The validity and efficiency of the presented method are supported by several examples, from simple benchmarks to complex industrial castings. According to our numerical results, the presented approach makes a relatively complete solution to the problem of automatic optimal rider design in the shape casting process.
منابع مشابه
Automotive Wheel Optimization to Enhance the Fatigue Life
Nowadays, lightweight automotive component design, regarding fuel consumption, environmental pollutants and manufacturing costs, is one of the main issues in the automotive societies. In addition, considering safety reasons, the durability of the automotive components, as one of the most important design requirements should be guaranteed. In this paper, a two-step optimization process including...
متن کاملQUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...
متن کاملEFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES
The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011